ساختارهای دو-هامیلتونی و تکینگی های سیستم های انتگرال پذیر
پایان نامه
- دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
- نویسنده رمیسا کرمی
- استاد راهنما قربانعلی حقیقت دوست اسمعیل عابدی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
یک سیستم همیلتونی روی یک خمینه ی پواسون m در صورتی انتگرال پذیر نامیده می شود که شامل تعداد کافی انتگرال اول f_1...f_s باشد که این انتگرال ها دو به دو جا به جا می شوند و تقریبا همه جا روی m مستقل تابعی باشند. در این پایان نامه ساختار مجموعه ی تکین k که در آن دیفرانسیل های f_1...f_s وابسته ی خطی می شوند را مطالعه می کنیم و نشان می دهیم در سیستم های دو هامیلتونی،این ساخنار با با ویژگی های دسته براکت های پواسون سازگار متناظر ارتباط تنگاتنگی دارد. هدف اصلی ما شرح این ارتباط است بدی منظور که نشان دهیم رویکرد دوهامیلتونی در مطالعه ی تکینگی های سیستم های انتگرال پذیر بسیار موثر است، به ویژه در حالت هایی با درجه ی آزادی بالا که استفاده از دیگر روش ها، منجر به مشکلات محاسباتی می شود. از آنجا که ساختار دو-هامیلتونی، یک تعبیر جبری طبیعی دارد، فناوری به کار رفته در این پایان نامه به ما اجازه می دهد که مسائل توپولوژیکی و تحلیلی مربوط به پویایی های سیستم را به زبان جبری محض فرمول بندی کنیم، که منجر به پاسخ های ساده می شود.
منابع مشابه
تکینگی های سیستم های هامیلتونی انتگرال پذیر: معیاری برای ناتباهیدگی، با کاربردی برای ماناکوف تاپ
فرض کنید (m,?) یک چندگونای 2n-بعدی سیمپلکتیک باشد و h1, . . . , hn توابع جابه جایی و مستقل تابعی روی m باشند. در این پایان نامه محکی هندسی برای ناتبهگونی نقطه ی تکین p ? m به مفهوم الیاسون معرفی می کنیم. از این محک برای یافتن تکینگی های سیستم ماناکوف تاپ (همچنین جسم صلب چهاربعدی) استفاده می کنیم. با به کار بردن نظریه ی فومنکو به مطالعه ی همسایگی u از برگ لیوویلی تکین ما...
سیستم های هامیلتونی طبیعی دو-انتگرال پذیر روی منیفلدهای ریمانی
دراین پایان نامه به ارائه ی مسأله ای از سیستم های انتگرال پذیر طبیعی روی منیفلدهای ریمانی q مطابق طرح نظری هندسه دو-هامیلتونی می پردازیم. مفهومی از دو بردارهای پواسون طبیعی روی منیفلدهای ریمانی بطورمختصرمرور می شود. طبقه بندی سیستم های دوانتگرال پذیرروی فضاهای اقلیدسی ازبعد پایین بحث می شود. دو بردارهای طبیعی پواسون را روی کرهsn معرفی می کنیم و بالاخره تعمیم های ممکن از دو-بردارهای پواسون طبیعی...
ناورداهای توپولوژیکی برای سیستم های هامیلتونی انتگرال پذیر
ارائ? معادلات هامیلتون راهکاری بود که توسط هامیلتون برای بررسی حرکت اجسامی پیشنهاد شد که بررسی آنها توسط معادلات نیوتن دشوار و یا امکان ناپذیر بود. بنابر این حل این معادلات از دیرباز مورد توجه فیزیکدانان بوده است. در حالت های پیچیده برای بررسی و حل این معادلات از هندس? همتافته کمک می گیریم. این هندسه ابتدا برای بررسی سیستم های نجومی به وجود آمد و پس از آن با ظهور مفاهیمی مانند براکت پواسن، نقش ...
15 صفحه اولساختار دو هامیلتونی برخی سیستم های انتگرال پذیر روی (4)* so
در این مقاله می خواهیم با روشهای پیدا کردن تانسور پواسون سازگاربا تانسورکانونیک روی دوگان جبر لی so*(4) آشنا شویم. ساختارهای پواسون درجه دوم روی so*(4) و e*(3) طبقه بندی شده اند، که هر کدام دارای برگ بندی با برگهای سیمپلیکتیک به عنوان تانسورهای لی پواسون کانونیکال هستند. متغیرهای تفکیک پذیر برای برخی ازسیستم های دوانتگرالی متناظرساخته شده اند.
هامیلتونی های تحلیلی مختلط و مدل های انتگرال پذیر
هدف از این مطالعه، یافتن سیستم های دینامیکی هامیلتونی دو بعدی انتگرال پذیری است که توسط یک پتانسیل یک بعدی مختلط تولید شده اند. برای این کار، ابتدا، پس از توضیح مختصری راجع به سیستم های دینامیکی هامیلتونی و مساله انتگرال پذیری آنها، شرحی در مورد دینامیک و ساختار همتافته سازگار مربوط به تبدیل یک پتانسیل دینامیکی یک بعدی به سیستم های هامیلتونی دو بعدی انتگرال پذیر، توسط بردن پارامترهای آن به فضای...
15 صفحه اولنقاط منفرد نگاشت ممانی سیستم هامیلتونی انتگرال پذیر با دو درجه ی آزادی
یک مشخصه ی مهم در مطالعه ی کیفی سیستم های هامیلتونی انتگرال پذیر یافتن نقاط بحرانی هامیلتونین سیستم می باشد .زیرا با یافتن این نقاط بحرانی است که دیاگرام انشعاب وبا استفاده از این دیاگرام انشعاب است که توپولوژی رویه های هم انرژی مشخص می شود .در این رساله تعاریف وقضایای مورد نیاز برای ورود به بحث دستگاههای انتگرال پذیر را مطرح می کنیم و به به طور کلی بررسی کرده ودر هر حالت نقاط بحرانی نگلشت ممان...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023